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Abstract. Reinforcement learning and Causal Inference are indispens-
able part of machine learning. However, they are usually treated sep-
arately, although that both are directly relevant to problem solving
methods. One of the challenges that emerge in Reinforcement Learning,
is the trade-off between exploration and exploitation. In this work we
propose to use causal models to attend the learning process of an agent.
The causal models helps to restrict the search space by reducing the
actions that an agent can take through interventional queries like: Would
I have achieved my goal if I had drop the passenger off here?. This
simulates common sense that lightens the time it takes the trial and
error approach. We attack the classic taxi problem and we show that
using causal models in the Q-learning action selection step leads to higher
and faster jump-start reward and convergence, respectively.

Keywords: reinforcement learning, causal models, taxi domain.

1 Introduction

Reinforcement learning (RL) is the study of how an agent can learn to choose ac-
tions that maximize its future rewards through interactions with an environment
[18]. RL is a technique to solve complex sequential decision making problems in
several domains as healthcare, economics, robotics, among others. Existing stud-
ies apply RL algorithms in discovering optimal policies for a targeted problem,
but ignores the abundant causal relationships present in the target domain.

Causal inference (CI) is another learning paradigm concerned at uncovering
the cause-effect relationships between different variables [16,15]. CI addresses
questions like: If I desire this outcome, what action do I need to take? So it may
provide the information for an intelligent system to predict what may happen
next so that it can better plan for the future. Given a causal structure of a system
it is possible to predict what would happen if some variables are intervened,
estimate the effect of confounding factors that affect both an intervention and its
outcome, but also, predict the outcomes of cases that are never observed before.

Both reinforcement learning (RL) and causal inference have evolved indepen-
dently and practically with no interaction between them, despite the fact that
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both are directly relevant to problem solving processes. Nonetheless, recent work
has focused on connecting these fields [8,9,20,5]. The goal of these works is to
show how RL can be made more robust and general through causal mechanisms
or vice versa. Also, a growth in what some are beginning to call (CausalRL) [12]
is expected to become an indispensable part of General Artificial Intelligence.
What CausalRL does seems to mimic human behaviors, learning causal effects
from an agent communicating with the environment and then optimizing its
policy based on the learned causal relations.

One of the challenges that emerge in Reinforcement Learning, is the trade-
off between try new actions (exploration) and select the best action based on
previous experience (exploitation) in a given state. Traditional exploration and
exploitation strategies are undirected and do not explicitly chase interesting tran-
sitions. Using predictive models is a promising way to cope with this problem. In
particular, these models may hold causal knowledge, that is, causal relationships.

In the present investigation we propose a method to guide the action selection
in an RL algorithm using one or more causal models as oracles. The agent can
consult those oracles to not perform actions that lead to unwanted states or
choose the best option. This helps the agent learn faster since it will not move
blindly. Through interventions in the causal model, we can make queries of the
type What if I do ...?, e.g., If I drop the passenger off here, will my goal be
achieved? This type of interventions can help to reduce the search space. An
important distinction is that, in order to use a causal model as in favor of a
reinforcement learning algorithm, we do not need it to be complete. In other
words, we can think of one or several partial models that express relationships
between variables of one or several subtasks of the general task we are trying
to solve.

The remainder of this paper is organized as follows. Section 2 reviews related
works. Section 3 describes in a very general way some concepts used in the
proposal. Section 4 describes the proposed method. In Section 5 the experimen-
tal set-up is described and the main results presented. Finally, in Section 6,
conclusions and future research directions are given.

2 Related Work

RL and CI have been widely explored separately [16,18]. Nevertheless, there are
recent studies that are looking to connect the concepts of these two areas to
set something they call Causal Reinforcement Learning, a paradigm that unites
both approaches to solve problems that cannot be solved individually in each
discipline [1,11]. The authors in [8], from a psychological approach, establish that
the model used in model-based reinforcement learning algorithms it is causal.
Taking an action in a state causes both a reward and a transition to a new state.
However, the manipulationist mechanism is not addressed or explained.

Some other works have focus on handling confounders (those variables that
affect action and output) in classic RL problems [2,12,7]. Besides that, it has
been show that causal reasoning can arise from RL [4,13].
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The idea of using knowledge from causal models to avoid or reduce trial-and-
error learning in RL has not been explored, as far as we know. Authors in [14]
propose a new method to speed up RL training through the use of a property
that they define as state-action permissibility.

The main idea is to have a predictor that guides the action selection step.
The predictor classifies whether an action leads to an optimal solution given
the action and the current state. What distinguishes our work from this one is
the use of causal model composed of state variables, actions and goals. Instead
of consulting the model for predictions we propose to make intervention type
queries so the agent is in the second rung of the ladder of causation.

3 Background

The definition of causality is that X causes Y , X → Y , if and only if an
intervention or manipulation in X has an effect on Y , keeping everything else
constant [17].

A graphical causal model is a pair M = 〈D,ΘD〉 consisting of a causal
structure D and a set of parameters compatible with D. A causal structure
of a set of variables V is a directed acyclic graph (DAG) in which each node
corresponds to a different variable, and each arc represents a direct relationship
among the corresponding variables [16]. The parameters ΘD assign a function
xi = fi(pai, ui) to each Xi ∈ V and a probability measure P (ui) to each ui,
where PAi are the parents of Xi in D and where each Ui is a random disturbance
distributed according to P (ui), independently of all other u.

To better illustrate the above, consider the following example. Travis is a taxi
driver whose main goal is to pick up a passenger at a certain point (passenger
position) and take him to his destination (destination position) and drop him
off there. For Travis, meeting his goal is based on his common sense. He doesn’t
try to pick a passenger when there is no passenger, drop him off there when he
doesn’t has arrived to the goal position, etc. We can create a causal model from
the rules that guide Travis.

The parameters of our causal model can be defined as Boolean variables like
in the set of equations 1, where u1, u2 ∈ {True, False}, u3, c4, c5 can take some
value that characterizes some position in the environment, e.g., coordinates in
a map (c4 and c5 can be constant values). The rest of ui, u

′
i ∈ {True, False}

variables can be seen as unusual behaviors.

Let’s suppose the case when onDestinationLocation = False, even when
the taxi is on the same position as the passenger, maybe the passenger position
has been updated without notifying the taxi driver, in this scenario u′6 = True.
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The counterpart happens when u6 = True, then the taxi is on the passenger
position, see eq. 1 (the corresponding causal structure is shown in Figure 1):

pickup = u1,

dropoff = u2,

cabPosition = u3,

destinationPosition = c4,

passengerPosition = c5,

onDestinationPosition = [(destinationPosition = cabPosition) ∨ u6] ∧ ¬u′6,
onPassengerPosition = [(passengerPosition = cabPosition) ∨ u7] ∧ ¬u′7,

inTheCab = [(pickup = True ∧ onPassengerLocation = True)

∨ u8)] ∧ ¬u′8,
goal = [(dropoff = True ∧ inTheCab = True∧

onDestinationLocation = True) ∨ u9] ∧ ¬u′9.
(1)

Causal models, unlike probabilistic models, can serve to predict the effect
of interventions. Interventions allow us to make queries of the type: Would the
passenger be inside the taxicab if we make sure that the passenger is picked
up here?. An intervention, which we denote by do(Xi = xi), means removing
the equation xi = fi(pai, ui) from the model and substituting Xi = xi in
the remaining equations [16]. The new model represents the system’s behavior
under the intervention do(Xi = xi) and, when solved for the distribution of Xj ,
produces the causal effect of Xi on Xj , which is denoted P (xj |do(Xi = xi)).

For example, to intervene on the variable inTheCab in our example would be
to set to one despite of whether the passenger was picked up. We would represent
this by replacing the equation inTheCab = pickup×onPassengerLocation with
inTheCab = True. Graphically, we can think of the intervention as “breaking
the arrows” pointing into inTheCab.

4 Proposed Method

Our hypothesis is that causal inference can assist RL in learning value functions
or policies more efficiently through the use of causal relations between state
variables or between actions and state variables and therefore reducing the state
or action space significantly.

To that end we proposed a method which consists of applying Algorithm
3 as a modification of the exploitation stage of Q-learning [19]. In general the
method operates as follows. The agent observes a state, and through queries to
one or more causal models, selects the action likely to allow the agent to meet
a goal. The parameters of each causal model are given by a probabilistic SEM.
The variables of the model are divided in three sets: state variables X, actions
A and targets Z. The variables are defined as follows: x = fx(Pax), x ∈ X,
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Fig. 1. Causal structure D for set of equations 1. The color of the nodes indicates to
which set of variables corresponds. Red for actions (A), Yellow for target variables (Z)
and blue for state variables (X). (Best seen in color).

z = fz(Paz), z ∈ Z where Pax ⊆ X ∪ A and Paz ⊆ X ∪ Z ∪ A. From the taxi
example, the corresponding variables from Equation 1 for X,A,Z can be set
as follows:

X = {passengerPosition, onPassengerPosition, cabPosition,
onDestinationPosition, destinationPosition},

A = {pickUp, dropOff},
Z = {inTheCab, goal}.

In Algorithm 3, B is a set of observable instantiated variables, i.e., given the
agent’s observation we assign values to state variables from X. We assume that
interventionist and observation distributions are already given so simply ask for
P (z|do(a), B) to obtain the causal effect in Algorithm 3 step 4. For our proposed
method to work, the following assumptions must be meet:

– Non-empty set Z of target variables, can be ordered by a priority function.
– Non-empty set A of actions variables, containts only boolean variables.
– The agent can select only one action in a given state.
– All parameters of each Causal Model are defined.

5 Experimental Set-Up and Results

To show that our approach promises to be a way to improve RL we integrate
it into the classical Q-learning algorithm. We replace the exploration step in
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Algorithm 1: Q-Learning

input : < S,A,R >
output: Table Q

1 Initialize Q(s, a) arbitrarily
2 Repeat (for each episode):
3 Initialize s
4 Repeat (for each step of episode):
5 Choose a from s using policy derived from Q(e.g., ε - greedy)
6 Take action a, observe r, s′

7 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′))−Q(s, a))]
8 s← s′

9 until s is terminal or invalid
10 return Q

Algorithm 2: Causal Q-Learning

input : < S,A,R >,G
output: Table Q

1 Initialize Q(s, a) arbitrarily
2 Repeat (for each episode):
3 Initialize s
4 Repeat (for each step of episode):
5 a← interventional based selection using (s, G)
6 If (a = None):
7 Choose a from s using policy derived from Q(e.g., ε - greedy)
8 Take action a, observe r, s′

9 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′))−Q(s, a))]
10 s← s′

11 until s is terminal or invalid
12 return Q

ε-greedy method to choose the actions by our method that queries the model.
The problem to solve is the classical taxi task [6]. Figure 11 graphically shows
the problem. A 5×5 grid world dwelled by a taxi agent. There are four locations
in this world, marked as R, B, G, and Y.

The taxi problem is episodic. In each episode, the taxi starts in a randomly-
chosen square. There is a passenger at one of the four locations (chosen ran-
domly), and that passenger wishes to be transported to one of the four locations
(also chosen randomly). The taxi must go to the passenger’s location, pick up
the passenger, go to the destination location , and drop the passenger off there.
The episode ends when the passenger is deposited at the destination location.

There are six primitive actions in this domain: (a) four navigation actions
that move the taxi one square North, South, East, or West; (b) a Pickup action;
and (c) a Drop off action. The six actions are deterministic. There is a reward
of -1 for each action and an additional reward of +20 for successfully delivering
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Algorithm 3: Action selection based on interventional queries.

Input : A state s sense by the agent, A set of causal models G, A set Z of
target variables of every g ∈ G ordered by a priority function

Output: An action a.
1 B ← get state observable values(s)
2 foreach z ∈ Z do
3 foreach a ∈ parents(z) where a is an action variable do
4 p← P (z = True|do(a = True), B)
5 . Here we get the causal effect on the target variable z through an

intervention in the action variable a using the causal model g
containing z.

6 if p > 0.5 then
7 return a
8 end

9 end

10 end
11 return None

Fig. 2. Sketch of the taxi enviroment [10].

the passenger. There is also a 10 point penalty for illegal pick-up and drop-off
actions [6]. There are 500 possible states: 25 squares, 5 locations for the passenger
(including when he’s inside the cab), and 4 destinations.

The causal model that is consulted to choose the actions is the presented in
Section 3, extending it to queries on movement actions, so that the agent does
not try move to positions where there are obstacles. For ease, we got rid of the
ui variables.
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Fig. 3. Average reward of Vanilla Q-learning and Q-learning guided by a causal model.

From the model in Figure 1 the color of the nodes indicates to which set
of variables corresponds. Red for actions (A), yellow for target variables (Z)
and blue for state variables (X). Since the environment is deterministic, there
is no need to compute a probability for the value of a target variable. Instead,
we evaluate whether the value of the target variable is True given the action
and B.

As our baseline we implement a vanilla version of the Q-learning algorithm
and we compare it with our version to which we denominate Q-learning + Causal
Model (CM). We run 50 times each version of the algorithm and in each execution
we compute the average reward per episode. Also, we set a qualifying mark
based on the one established by Open AI Gym 1. For this, we consider that the
algorithm had reached an optimal reward once the average reward is equal to 9.
So we assume that the algorithm that achieve it a smaller number of episodes
is faster. On average, vanilla Q-learning reaches that reward in 95 episodes and
Q-learning + CM in 65 episodes. In order to validate the results that the guided
Q-learning version of the algorithm performs better than the vanilla version,
we use the Wilcoxon Mann-Whitney rank sum test[3] with p < 0.001 to find
statistical significant differences.

Figure 3 show the average reward per episode in both version of the algorithm
for (average over 10 experiments). From the plot we can observe that our guided
version starts with a higher reward. This is to be expected because, the agent
doesn’t start blindly. For a range of episodes there is no difference between the
methods. However after a couple of hundred episodes, the Q-learnig guided by
a causal model seems to converge and keeps more stable.

1 https://gym.openai.com/envs/Taxi-v1/
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6 Conclusions

Reinforcement Learning has proved to be successful in decision making problems.
On the other hand, causal inference is clearly a novel but relevant and related
area with untapped potential for any learning task. The use of causal models
to provide auxiliary knowledge to an RL algorithm is a barely explored area.
However, from the results obtained, we can see that this type of knowledge has
the potential to accelerate RL. Although the problem attacked is simple because
all the causes we have are direct and observable, the experimental results show
that using causal models in the Q-learning action selection step leads to higher
and faster jump-start reward and convergence, respectively. As future work we
would like to try this action selection framework in Deep RL algorithms to solve
more complex problems. Coping with more complex problems involves tasks
not covered in this work, for example, undefined model parameters, incomplete
causal structure or an unreliable causal model. In addition, we would like to
explore the possibility that the causal model could also be learned during the
training of the RL algorithm.
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